
Understanding contribution and independence of multiple biomarkers for  
predicting response to atezolizumab  

BACKGROUND

• Biomarkers for accurately predicting response to anti–PD-L1 
immunotherapy from baseline samples are lacking due to biological and 
technical reasons1

• Response to anti–PD-1 and anti–PD-L1 agents may be dependent on 
multiple factors, including tumor characteristics, tumor microenvironment, 
and the status of the host immune system. Different biomarkers are 
expected to measure different aspects of these interactions2

• For example, PD-L1 expression by immunohistochemistry (IHC) measures 
the immune suppressive environment; tumor mutation burden (TMB) and 
neo-antigen burden (NB) measure tumor foreignness; immune phenotype 
may provide estimates of immune cell infiltration into the tumor

• Several features are associated with response but do not provide good 
classification performance1,2 

• No published studies have extensively compared and integrated multiple 
biomarkers of response. Moreover, the costs and complexities added by 
generation and integration of multiple biomarkers are not clear 

Hypothesis 
• Combined information from multiple biomarkers will improve prediction of 

response to anti–PD-L1 therapies

OBJECTIVES

• Understand the predictive value of biomarkers in a univariate manner and 
rank different biomarkers to allow prioritization in data generation

• Generate sparse signatures of response from ultra–high-dimensional gene 
expression and gene signatures from RNAseq profiles, understand their 
predictive value, and identify signatures that may help to understand the 
tumor biology

• Quantitate improvements in response prediction using systematic 
combinations of biomarkers

• Understand biomarkers suitable for distinguishing patients with stable 
disease (SD) from patients with progressive disease (PD) 

• Understand whether added complexity, due to integration of multiple 
biomarkers, is justified

• Provide guidelines for future biomarker studies for checkpoint inhibitor 
therapies

METHODS

Data set and procedure for model building
• We analyzed and integrated biomarkers measured in pretreatment 

tumor samples from IMvigor210,3 a single-arm phase 2 trial investigating 
the clinical activity of PD-L1 blockade with atezolizumab in metastatic 
urothelial cancer (Figure 1)4

• Additional biomarkers were derived from RNAseq data by scoring 
different signatures (eg, pathways and cancer hallmarks) and immune 
content deconvolution (eg, ESTIMATE, xCell, CIBERSORT, TIDE, 
Immunophenoscore, IMPRES)

• Patients with complete or partial response (CR/PR) were considered 
responders; patients with SD or PD were considered nonresponders 

• Evaluation of predictive and prognostic properties of biomarkers (both 
single and multivariate) was performed throughout using repeated (5×) 
5-fold cross-validation. Prediction metrics are reported from the test set in 
each case (Table 1)

• Area under the ROC curve (AUC) statistic was used to report predictive 
performance

Figure 1. Biomarker categories and clinical covariates considered 
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BCG, Bacille Calmette Guerin; ECOG PS, Eastern Cooperative Oncology Group performance status; TCGA, The Cancer Genome Atlas. 
Biomarkers categorized according to Blank et al. Science 20162

Procedure  for building penalized classification models from 
RNAseq data (gene and signature level)
• To remove gene signatures with prognostic value, we used survival 

association of genes and gene signatures from bladder cancer, lung 
cancer, and melanoma cohorts from TCGA

• We compared performance of regularized logistic regression, support 
vector machine (SVM), and random forest for binary classification and 
chose regularized logistic regression for sparse model building as being 
the best

• For models from gene expression and signature scores, 4 different 
methods of feature selection were applied (Table 2) before building 
penalized classification models

• For models trained on RNAseq gene expressions and signatures, there 
were 238-239 patients in each training set and 59-60 in each test set

Unpenalized models were built for integrating biomarkers by 
considering gene expression as a single covariate
• For the models combining various types of information (eg, NB with 

RNAseq), the size of the considered sets of patients were smaller as 
patients with missing values were dropped

• Logistic regression, extreme gradient boosting (XGB), and extreme trees 
(XT) were used to build models that integrated multiple biomarkers

RESULTS

Biomarker performance in stratifying response
• NB (and highly correlated TMB; r=0.85) was the best performing 

biomarker of response (AUC of 0.77) among those analyzed (Table 1)

• Models derived from gene expression signatures performed the second 
best (AUC 0.71; Tables 1 and 2) 

• None of the examined biomarkers could distinguish patients with SD from 
patients with PD with high AUC (Table 1)

• Metastatic disease status had moderate predictive power (AUC 0.65) for 
stratifying response

Performance  of penalized classification models derived from gene 
expression and gene signatures
• While inferior to TMB/NB in response prediction (Table 2), these models 

did not provide a better performance than an AUC of approximately 0.7 
obtained for single genes or signatures

• Metastatic disease status models performed similarly to those models 
built from gene expression data

• Certain gene signatures were frequently present during the model 
building process, highlighting their biological importance (Figure 2) and 
independent contributions to response

Comparison with PD-L1 IHC
• 4 biomarkers stratified response better than PD-L1 IC expression (Table 1) 

• PD-L1 IC had better AUC to stratify responders vs nonresponders than to 
stratify SD from PD

• Models derived from both gene signatures and gene expression 
outperformed PD-L1 IHC (Table 1 and 2)

Table 1. NB/TMB have the best power to predict response groups, but no  
biomarker satisfactorily distinguished patients with SD from patients with PD

Biomarker
Responder vs  
Nonresponder

SD vs PD

n AUC n AUC

Neoantigen burden 216 0.767 163 0.495

Tumor mutation burden 234 0.727 173 0.493

Gene signatures 298 0.712 230 0.583

Metastatic disease status 271 0.648 219 0.576

Gene expression 298 0.646 230 0.474

PD-L1 immune cell level 297 0.616 229 0.543

Immune cell status at enrollment 298 0.605 230 0.477

Lund2 subtype 298 0.601 230 0.561

Lund subtype 298 0.583 230 0.534

Tissue 292 0.570 225 0.517

Baseline ECOG PS 298 0.580 230 0.544

Tobacco 298 0.558 230 0.452

Pre-platinum 227 0.549 180 0.456

Immune phenotype 244 0.524 183 0.552

TCGA subtype 298 0.514 230 0.426

Sex 298 0.537 230 0.485

PD-L1 tumor cell level 297 0.494 229 0.513

Intravesical BSG 298 0.467 230 0.502

Table 2. AUC of classification models built using gene signatures (left panel) and 
genes (right panel) with different feature selection methods

Gene Signature Models Gene Expression Models

Method AUC Method AUC

RECIST SVM 0.712 LPC 0.66

Nonprognostic 0.687 Univariate selection 0.65

LPC 0.665 WGCNA 0.63

Univariate 0.663 All genes 0.603

LPC, lassoed principal component; WGCNA: weighted gene coexpression network analysis

Figure 2. Score distribution for top 2 signatures frequently present in  
regularized classification models from gene signatures 
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Rationale for and outcome of biomarker integration experiments
• Examination of individual markers and pairs suggested that while single 

markers were enriched for response groups, combining information from 
multiple biomarkers may help stratify response better (Figure 3) 

• For example, a high threshold of TMB enriched for responders  
(Figure 3A)

• However, the genomically unstable (GU) subtype showed responders at 
every IC level (Figure 3B), and a combination of lymph node-only metastasis 
status with IC2-positive status enriched for responders better than individual 
markers (Figure 3C), suggesting increased information to stratify response

• Unfortunately, systematic combinations of biomarkers with logistic 
regression (LogReg) and tree-based models (XGB and XT) showed very 
little (AUC 0.81) increase in predictive power (Table 3)

Figure 3. Combinations of biomarkers may better stratify response

A) TMB at high threshold B) IC vs genomic subtypes C) IC vs metastatic status
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Table 3. AUC for combination of biomarkers

Input Features
LogReg XGB XT

ROC HR ROC HR ROC HR

TMB+NB+ECOG+GE 0.801 1.547 0.793 1.551 0.815 1.9

log_TMB+log_NB+ECOG+GE 0.812 1.82 0.811 1.867

log_TMB+log_NB+ECOG 0.804 1.811 0.796 1.793

TMB+NB+ECOG 0.794 1.742 0.799 1.347 0.803 1.889

NB+ECOG+GE 0.797 1.83 0.778 1.627 0.798 1.82

NB+ECOG 0.783 1.829 0.785 1.363 0.796 1.807

log_TMB+log_NB+GE 0.776 1.33 0.785 1.485

TMB+ECOG+GE 0.782 1.715 0.72 1.413 0.765 1.856

TMB+NB+GE 0.776 1.397 0.759 1.39 0.78 1.552

log_NB+GE 0.773 1.358 0.778 1.541

log_TMB+log_NB 0.776 1.506 0.768 1.483

TMB+NB+PD-L1(IHC)+GE 0.765 1.364 0.758 1.403 0.775 1.586

NB+GE 0.774 1.562 0.76 1.472 0.775 1.565

TMB+NB+Lund2_GU+GE 0.774 1.332 0.759 1.383 0.767 1.512

log_NB 0.773 1.564 0.761 1.428

NB 0.773 1.751 0.756 1.382 0.77 1.467

TMB+NB 0.772 1.455 0.773 1.272 0.769 1.49

TMB+Lund2_GU 0.77 1.195 0.742 1.265 0.764 1.491

TMB+NB+Lund2_GU 0.769 1.293 0.77 1.396 0.765 1.48

TMB+Lund2_GU+GE 0.769 1.532 0.734 1.329 0.767 1.567

log_TMB+GE 0.764 1.23 0.762 1.444

TMB+GE 0.764 1.356 0.728 1.273 0.761 1.568

GE, gene expression

(In)dependence of biomarkers in predicting response 
• The χ2 tests for independence between pairs of biomarkers suggest that 

the lack of improvement may be due to presence of correlation between 
examined biomarkers (Figure 4A)

• For example, TMB and NB were highly correlated (Figure 4B; left panel). 
Moderate correlation was found between TMB/NB and probabilities for 
response from gene signature models (Figure 4B; right panel). Similarly, 
PD-L1 IHC levels (TC and IC) were also not completely independent, and 
genomic subtypes were not independent 

• This may explain the limited gain after combining some biomarkers

• Interestingly, at the TMB threshold of ≥10, the contribution of TMB 
appaered to be independent

Figure 4. Biomarkers of interest may not provide independent information 
for predictive models

A) Distribution of p values from χ2 test of independence

B) Examples of correlation between biomarkers
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LIMITATIONS OF THE STUDY

• Additional predictive biomarkers could be derived from the raw 
sequencing read information accompanying the study. For example: 

 – Genome-wide information on mutation and changes in chromosomal 
arm and focal changes in copy number, which have been shown to be 
better predictors of response than TMB/NB only

 – Information about changes in HLA locus (genotype, expression, and 
mutation) that need specialized software to show association with 
response and survival

 – Repertoire of B- and T-cell receptors

 – Microsatellite instability

• Unfortunately, we could not add the additional biomarkers due to 
restrictions on raw data access. Hopefully, future studies will include 
information on and impact of these biomarkers in order to predict 
response of biomarker combinations  

CONCLUSIONS

• NB/TMB had the best AUC for response prediction and could 
be the most attractive biomarker to measure in ongoing 
monotherapy and combination immunotherapy trials. This is in 
line with current knowledge from the literature

• Combinations of multiple biomarkers using 3 different methods did 
not improve response prediction significantly compared with NB

• The lack of improvement may be attributed to lack of 
independence of biomarkers and reduced number of samples

• The examined biomarkers did not distinguish PD patients from 
SD patients, suggesting natural grouping of patients with SD 
and patients with PD as nonresponders 

• Published algorithms for prediction of response (IMPRES, 
Immunophenoscore, and TIDE) did not provide good 
stratification

• Models from gene expression signatures were the second 
best predictors of response. Gene expression also provides 
additional information that may improve survival prediction 

• Therefore, generation of paired WEX/RNAseq data could be 
attractive for baseline response prediction for checkpoint 
inhibitors 

• The search for an ideal immunotherapy biomarker is not over. 
A single biomarker may not be sufficient to predict response to 
immunotherapies. Integration of independent biomarkers based 
on biological mechanisms is required
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